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Dipartimento di Ingegneria Aerospaziale
Seconda Universita di Napoli, Aversa, Italia

Abstract
This paper is concerned with the development of a fourth order Finite Volume
scheme for the numerical solution of the incompressible Navier-Stokes equations
on non-uniform grids. In fact, the use of non-uniform computational grids is
inevitable in handling non-homogeneous flow computations, while numerical
simulation of turbulent flows demand for higher order schemes. The effective
high order accuracy is obtained by reformulating the momentum equation in
terms of a fourth order deconvolved velocity field. Both a proper integration and
flux reconstruction is implemented for the space discretization. A Fractional
Time-Step method for the pressure-velocity de-coupling is adopted and a second
order semi-implicit scheme is used for the time integration. Particular attention
has been devoted in developing congruent time-accurate intermediate boundary
conditions for the predictor step.

1. Introduction

Direct Numerical Simulations (DNS) as well as Large Eddy Simulation (LES)
demand for accurate and efficient numerical schemes due to the wide range of
length scales involved in a turbulent flow. In fact, low order methods show high
numerical errors in the smallest resolved scales. As a matter of fact, for a long
time, the numerical simulation of turbulent flows has been carried out by means
of second order Finite Difference (FD) central scheme since, from the LES point
of view, one performs an implicit application of the top-hat spatial filter.
Moreover, LES on non-uniform grids were initially performed in a
straightforward manner without taking into account for the existing commutation
error, while only recently the correct equations for LES on non-uniform grids
were analysed [1] and much more importance was given to the correlation
between numerical errors and modelling ones (e.g.: [2]). More recently,
conservative fourth order FD schemes were proposed over both staggered and
co-located non-uniform grids (e.g.: [3]).
As it regards with the Finite Volume (FV) method, the integral form of the
Navier-Stokes equations appears the most opportune by a physical point of view,
allowing mass and momentum to be a-priori conserved. In this framework, an

evolution equation for the volume-averaged field v is solved, obtaining a second
order approximation for the point-wise velocity v, even by adopting higher-order
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fluxes integration. Very recently, a fourth order FV compact scheme was
proposed in [4], where a deconvolution technique was proposed in order to
recover fourth-order accuracy from the volume averaged velocity field. Actually,
such procedure was applied only in a post-processing step while the solved
variable remains the second order averaged one.
On the contrary, in this paper, we follow the approach already introduced in the
framework of the so-called Implicit Structural Models [5, 6]. In that approach, a
modified integral equation, governing the evolution of an effective fourth-order
variable, is obtained by means of a de-convolution procedure applied on the
original FV equations. Following such guidelines, the development of a high
order FV scheme on non-uniform grid is illustrated in the framework of the
Fractional Time-Step (FTS) method for pressure-velocity de-coupling. The
spatial discretization is performed according to the Simpson integration rule
while proper Lagrange interpolation is used for the fluxes reconstruction. The
time integration is performed by means of the semi-implicit Adams-
Bashforth/Crank-Nicolson (AB/CN) scheme. Finally, time-accurate boundary
conditions to be associate to the predictor equation were developed in a manner
consistent with the adopted time integration. The proposed method has been
validated in the numerical simulation of both the two-dimensional Taylor
decaying vortex solution and a time evolving mixing layer.

2. Deconvolved Navier Stokes Equations On Non-Uniform Grids
Consider the Navier-Stokes equations for incompressible isothermal flows in a
bounded domain V, written in integral non-dimensional form over a Finite
Volume (FV) K2(x)__V, centred in x, whose boundary is denoted by M(x):

fn.v dS= , (1)

2 dS 0 )

being v the local volume averaged velocity, IQ(x)l the measure of the FV, n the
local unit vector outward to the boundary aI• and F the momentum flux tensor,
expressed as vv + Ip - _V/Re. A proper initial field v0 and boundary conditions

Vb on aV must be associated to the system (1)-(2).

Following the formulation proposed in [5], an m-th order Taylor expansion for v
around the FV centre x is performed, being m an even integer. Owing to the cell
symmetry, one gets (for sake of brevity, time dependence is omitted):

v(x)= (I.-Rm))v -O(hm+2)=-Gxm) V +O(hm+2) (3)
being h a linear extension of the FV, e.g. h=lI2(x)i1/3. The differential operator

RM)m= ) D2..W was introduced, being D(1'1"" - a"1 a'1 a".3 the
1=1 •!11+12+13=1X
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/-th order three-dimensional derivative in a Cartesian reference system and

c, W = I f ( x)l, dx' the coefficients of the moments of the

Taylor expansion terms. By truncating and inverting Eq.(3), one obtains the rn-th

order de-convolved velocity V(x) [G(m)1]-7v, whose properties in both physical

and Fourier space were analysed in [5]. If the inverse operator [Gm')1' is applied

on Eq.(2), one gets an evolution equation for the de-filtered field V , but
commutation terms appear for non-uniform grids. Herein, in order to avoid the
explicit computation of such terms, the LHS of Eq.(2) is simply re-written, so
that:

x -v = I""" + Idiff + c1r (4)

with
Ip,.e, f rdS n.I ;I,, 1p dSn.vv ; (5)

IWO__ I -) In(X)I aaw rn*~e1 .f - fdS n. Vv -- Dv;R D- = xI f dSn -_V(e)
Id'J-Re IQ(x )I,,(.) -- R XIa. -'

As a matter of fact, from the LES point of view, Eq. (4) should be supplied with
a suitable Sub-Grid Scales (SGS) model, in order to express the RHS in terms of

the resolved variable V . However, in this paper, we just consider F(v)= F(V)

without addressing this issue. In the framework of Implicit Structural Models
[6], this can be interpreted as an LES approach for the top-hat filtered variable,
supplied by a sort of generalized scale similarity SGS model. Finally, the de-

convolution order is fixed to m=2 (G2 - G. 2") in order to get V representing an

effective fourth-order approximation to the point-wise velocity field.

3. A Fourth Order Deconvolution-based Scheme on Non-Uniform Grids
In this section, a fourth order FV method is developed for 2-D flows simulation
on Cartesian non-uniform grids. The de-coupling between the velocity and the
pressure gradient is performed according to the FTS method [7], while the semi-
implicit Adams-Bashforth/Crank-Nicolson second order scheme is adopted for
the time integration. Furthermore, let us assume the computational domain
V=[0,/_]x[0,L2] . Owing to its computational simplicity, a co-located

arrangement of the variables was adopted, hence the flux vectors defined onto
the face-nodes must be approximated in terms of the balanced variables in the
FV centre nodes.

3.1. Two-Dimensional Grid Definition
The grid points (see Fig. I) are uniformly distributed in x-direction (supposed to
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be a stream-wise direction), i.e., xi = (i - I)ha + hk / 2, with h1=L1/N1 the step size,

i= 1.... N1, being N, the number of FVs in x- direction. The y-direction (supposed
to be a normal wall one) has non-uniform grid spacing obtained by means of an
I -D mapping y = Y ("), being " the independent variable in the computational
domain. This latter is uniformly discretized by a step size H=I/N 2, being N2 the
number of FVs in y-direction. Furthermore, for each FV the face co-ordinates
y- = Y(•j)and y+ = Y(ýj) , are defined forj=1,.. I_ 2 and thus, the FV grid node

results yj = (y- + y.)1 2, being y- = y' -, for grid construction. The mesh size

in y-direction is defined as h2(j) =- = Y(ýj÷i)- Y (j) having assumed a

smooth mapping ( h2 /H =O(i) ) so that, the FV definition is
nij=-[xi-h,/2;xi +t 1/2]x[yj- h(j)12;yj +h2(j)/2J" It is noteworthy that one

can simply express the face co-ordinates as x =x,±+h/2,y±=yj±h2 (j)/2

3.2. The FTS Procedure and The Discrete Time Integration
In Eqs.(1) and (4) the diffusive terms along the y-direction are integrated in time
by means of the Crank-Nicolson scheme, while the Adams-Bashforth one is
adopted for all the other terms. In the present FTS method (pressure-free
projection method), first an equation for a non-solenoidal vector v* is obtained
by integrating Eq.(4) and eliminating the pressure term:

*G2  AtDY [[G 2+ +At(D+ At (31" 1 -I- (6)R2 2 Re 2 Re -2 (6)

in V
v* = v on aV

f d/ • yd yDx =-~ x -r a ' d
In the previous relations, the operator D was split as D = Dx+ Dr, along the
Cartesian directions, being x± and y± the face co-ordinates of 92. Observe that the
de-convolution procedure does not increase the computational cost since a semi-
implicit procedure has been adopted for the time integration. Therefore, the LHS
will simultaneously take into account for both deconvolution and time
integration
The predicted velocity field v* must be corrected by means of a pure gradient
field according to:

Vn+1 = V* (7)

Therefore, once the vector field V was computed, the continuity constraint is
enforced at the new time level t"n' by means of the projection step:
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= _"v*dS ; ) on av (8)

associated to the proper normal boundary conditions.

3.3. Fourth Order Spatial Discretization
The achievement of a real fourth order space accuracy is obtained by means of
the Simpson integral discretization along with explicit Lagrangian interpolation
for the fluxes discretization. Although, at the same accuracy, a Lagrangian
polynomial involves a wider stencil than a Hermitian interpolation (as recently
proposed in [4]), the former approach remains simply applicable in the non-

h 2 h22 h(y) a
2

uniform direction. The operator G2 = I +---2 + is
24 a2 ._= 24 a 1 2 

.=

discretized to fourth order accuracy by considering second order central
difference formulas for the spatial derivatives. Having deconvolved the velocity
field to fourth order accuracy, the integral fluxes in Eqs.(6) and (8) are
congruently discretized by means of the Simpson formula. In such a way, one
has, as an example, for the net flux along x-direction:

Yj [f (xi, ,1)- f (x-.,T])]di=-- x, + 4fi'j-+ fi J- 8h25 4 +"". (9)
Yj i

wherein, the face-node unknowns (see Fig. 1) are expressed in terms of the grid
nodes values. A high-order Lagrangian interpolation procedure is adopted by
factorising the function along each direction and approximating both the factors

by means of two third degree polynomials, i.e.: f(x, y)= f(x, y) = Ll(x)L(y).

This way, one obtains a global 25 grid-nodes computational molecule.

3.4. Boundary Conditions
The original system (1), (4) was de-coupled in the separate prediction (6) and
projection (8) equations. The solution of this latter, together with Eq. (7), allows
the intermediate velocity v* to be corrected by imposing the exact normal
velocity component nvflVbI on WV. Since the projection can not correct the
tangential velocity component, this latter must be congruently assigned for
solving Eq.(6). In this paper we propose a procedure for assigning time accurate
boundary conditions. In fact, by taking the limit of Eq.(6) for vanishing grid
spacing (G2--fI for h--0) and projecting it along the direction tangential to the
boundary, one gets:

At a 2v___ ( ,, + At a - 2  V

S 2Re ay2 v = 2Re a2 (

A r. 1e , ax2V-
~V [3vv)n- (vv) _]---1(3 2 2

2 1- Reý x~x)a
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When properly spatially discretized, Eq.(10) provides the correct second order
time accurate solution on the frontier, as illustrated in the next section.

4. Numerical Results
The adopted test case is the classical 2-D Taylor decaying vortex solution at
Re=l. The error estimations are performed in the computational domain V=[-z
)4x[-; 7d, by taking the L_ norm of the difference between the x-component of
the exact and numerical velocity field. In a first test, for bi-periodical boundary
conditions, the effect of the de-averaging procedure was studied, having used the
fourth-order flux integration (9). The resulting errors, computed after 100 time
steps (At= 10 4), are shown in Fig.2 versus the normalised grid size in a double
logarithmic scale, for both uniform and non-uniform grids. It can be noted that
only in the presence of the de-averaging procedure (m=2) an effective fourth
order accuracy is reached in computing unsteady solutions. The space accuracy
is also checked for Dirichelet boundary conditions in the y-direction, as
illustrated in Fig.3 on both uniform and non-uniform grids. Moreover, the
correctness of the proposed boundary conditions (10) is analysed from the
results in Fig.4, where the time accuracy tests is reported. A single time
integration was conducted in order to avoid stability problems when working
with high time steps. The errors are reported versus the used time step, showing
a third order slope according to the fact we are evaluating the direct error on a
single time step, that corresponds to a second-order local truncation error.
Finally, the procedure was tested for a time evolving mixing layer. The initial
configuration is the same adopted in [9], i.e. a hyperbolic tangential velocity
profile u(y) = u_ tanh 2 y/6 1 (being 2 6l the initial vorticity thickness)
submitted to a white noise perturbation plus a deterministic sine perturbation at
k4=(27UXa) with Xa=7 91. Kelvin-Helmholtz instabilities lead to the development
of vortices which in a later stage roll-up and merge. This is a good example for
the tendency of 2D turbulence to transfer energy from small to large scales thus
requiring an accurate numerical simulation. The preliminary results of this study
are reported in Fig.s 5 for a 1282 computational grid on a domain V=[O, 4a]×[-
2X•., 2),,] at Re = u_0 51 / v = 250 showing the salient features of backscatter

transfer energy and the appearance of a 0 range according to the LES performed
in [9].
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Figure 1: description of the adopted 2-D grid, Figure 2: Space accuracy tests with Bi-
non-uniform in the y- direction. For each j-th periodic boundary conditions applied. Effects
finite volume, thc vertical flux section is of the de-averaging procedure on the accuracy.
centred with respect to the node j i.e., Errors computed after 100 time steps on both
y±-OJ)=yi+h2(j)12. The unknown variables u, v, uniform and non-uniform grids.
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Figure 3: Space accuracy tests with Periodic- Figure 4: Time accuracy tests. Errors
Dirichlet boundary conditions applied. Errors computed after one time steps on both uniform
computed after 100 time steps on both and non-uniform grids of 602 CV's.
uniform and non-uniform grids.
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Figure 5: Time evolving mixing layer; isovorticity contours are on the left column while the one-

dimensional energy spectra are on the right for I = 3 58I / u. and t =65,51/ u-,


